Aliens Among Us ... Success of Invasive Asian Carps in Midwestern Waterways

Reuben Goforth

¹Department of Forestry & Natural Resources Purdue University, West Lafayette, IN

*E-mail: rgoforth@purdue.edu

Voice: 269-967-7620

Alien/Invasive/Introduced/Exotic/Non-indigenous/Non-native/Nuisance Species

- Terminology can be confusing and misused
- Invasive can also refer to native species that become overpopulated w/i native distribution

Modes of Introduction

Intentional

- Legal for management or control (e.g., Pacific salmon, grass carp)
- Illegal (e.g., bucket stocking, aquarium releases, bait bucket releases)

Accidental/Unintentional

- Artificial waterways
- Aquaculture pond overflows
- Ballast water release

Aquatic Invasive Species (AIS) Facts

- AIS often most successful in degraded systems (Moyle & Light 1996)
- Small percentage become established
 - Generally <10% have significant impacts
- Ecological impacts
 - Compete with native species
 - Prey/parasitize on native species
 - Alter food web structure
- Economic impacts
 - Lost commercial and recreational fisheries
 - Industrial/commercial/recreational fouling

Aquatic Invasive Species (AIS)

- Native species lost due to alien species:
 - Prey/parasitize native species (e.g., sea lampreys)
 - Competition
 - Difficult to demonstrate
 - E.g., whitefishes lost to competition from alewife

- Disease

- Parasites & pathogens carried by introduced fish
- Contributes to inability of native fish to compete
- Hybridization

Aquatic Invasive Species (AIS)

Characteristics of successful invaders

- Abundant/widely distributed in native range
- Wide environmental tolerance
- High genetic variability
- Short generation time
- Rapid growth
- Early sexual maturity
- High reproductive capacity
- Broad diet (opportunistic)
- Rapid natural dispersal capability
- Commensal with human activities

Continued Threats Despite Tighter Regulations

- High environmental tolerance of invading species
- Lack of compliance/incomplete compliance
- Lack of education
- Flagrant disregard of policy

- "Asian carp"
 - Bighead carp, *Hypophthalmichthys nobilis*
 - **Zooplanktivore**
 - Silver carp, H. molitrix
 - Phytoplanktivore
 - Grass carp

 Ctenopharygodon idella
 - > Macrophytes
 - Black carp

 Mylopharygodon piceus
 - > Molluscivore

- Bigheaded carp (*Hypophthalmichthys* spp) invasion history well-known (started in Arkansas 1972 & 1973)
- Invasion of Great Lakes Basin considered imminent (Jerde et al. 2011)
- Substantial economic & ecological consequences of invasion & establishment very likely (Cudmore et al. 2012)
- Considerable effort expended to prevent additional introductions that could lead to establishment and wider distribution (e.g., electric barriers)

• Ecosystem effects

FORESTRY & NATURAL RESOURCES

PURDUE AGRICULTURE

Danger to humans

FORESTRY & NATURAL RESOURCES

PURDUE AGRICULTURE

Assessing/Predicting Threats

- Prevent new introductions; halt, limit, slow dispersal
- Multiple efforts based on:
 - Life history, habitat requirements, invasion histories, & human uses (Kolar & Lodge 2002; Cudmore et al. 2012)
 - Ecological niche & habitat suitability models (Chen et al. 2007; Herborg et al. 2007; Cudmore & Mandrak 2011; Cudmore et al. 2012; Kocovsky et al. 2012)
 - Bioenergetics modeling (Cook & Hill 2010)
- Mixed results
- Constrained by knowledge of their ability to adapt to novel environments?

Key Ecological Factors (Native)

- Typically lentic & need "large" rivers to spawn
- 80-100 km undammed river/channel (Kolar et al. 2007)
 - BUT, eggs known to develop in static conditions
- Rising hydrograph/water temps ≥18 °C
 - ➤ Water velocity ≥0.7 m/s (Abdusamadov 1987)
 - Precipitation & discharge as proxies (e.g., Kocovsky et al. 2012)
 - BUT, reproductive needs may not be as restrictive in new environments (e.g., Kara Kum Canal, Turkmenistan)
- Spring/early summer spawning
 - ➤ BUT, spawning may occur multiple times throughout summer (Rasmussen 2002; Papoulias et al. 2006; Schrank & Guy 2002)

Plasticity

- Sufficient anecdotal/preliminary/recently published evidence exists to suggest that bigheaded carps more plastic in novel systems
- Spawning habitats in native range different from North America (e.g., Missouri River, Deter et al. 2012)
- Bigheaded carps likely to be able to acclimate to a wide range of conditions ("adaptable," Kocovsky et al. 2012)
- Relatively little ecological info on bigheaded carps in North American waters
- More quantitative understanding of ecology in North American waters could improve management strategies

Objectives

- Increase understanding of bigheaded carp spawning ecology in North American freshwaters
- Conduct surveys of drifting eggs in the Wabash River, IN
 - \triangleright Evaluate gage height, \triangle gage height, water temperature as factors
 - Determine the temporal extent of spawning
 - Determine upstream-most extent of spawning

Study Area

Upper Wabash River

Eagle Marsh

Drifting Egg Sampling

- Bongo net pulls in triplicate (333 μm, 500 μm)
 - Weekly pulls at RM310 (Summer 2011 & 2012)
 - 3-5 min pulls; velocity added in 2012

Pull Direction

Flow

Egg Verification

- Chapman 2006; Chapman & George 2011
- DNA
 - PCR & qPCR (Jerde et al. 2011); 2011 samples

– qPCR D-loop region of mitochondrial DNA (Coulter et al. *In Press*);
 late 2011 & 2012

PURDUE AGRICULTURE

2011

- Eggs detected on 19 of 25 sample dates
- Some hydrological variability early, but largely stable from mid-July – September
- Eggs detected @ water temps
 from 18.5 29.7 °C
- Eggs detected as late as 01-Sep
- DNA –confirmed eggs exclusively silver carp

· 2012

- Very little hydrological variability
- Eggs detected @ water temps from $\approx 18-26$ °C (to date); egg abundance increased markedly @ 25 °C despite absence of Δ gage height
- DNA –confirmed eggs exclusively silver carp

- Logistic Regression Analysis on Presence/absence
 - Presence/absence of bigheaded carp eggs at Wabash RM310 not related to change in gage height from 48-24 h prior to sampling, gage height at the time of sampling, or water temperature

Fig. 3

Spatial Extent of Spawning (2011)

- Conducted bongo net tows @ 5 additional sites upstream from Wabash
 RM310 (RM324, 340, 351, 370, & 390)
- Limited to June due to water levels
- Tows on 01-Jun &
 02-Jun-11 yielded
 eggs @ 351, 370, &
 390
- Wabash River @
 RM390 ≈30 m wide
 & drains 4,750 km²

Fig. 1

Discussion

- Rising/changing hydrograph not essential for successful spawning
 - Confirms Deter et al. (2012) & Kocovsky et al. (2012) suggestions that a rising hydrograph can be sufficient, but not required for spawning
- A wider range of rivers

 may be more susceptible to invasion/establishment than previously

 thought

FORESTRY & NATURAL RESOURCES

Discussion

- North American bigheaded carps demonstrate protracted spawning
 - Confirms suppositions by earlier authors based on multiple size classes within YOY & variably developed eggs within ovaries of females
 - There is no question that reproductive effort is reduced over protracted period, although recruitment related to protracted events unknown
 - Also unknown are spawning habits of individuals

Discussion

- Detection of eggs @ Wabash RM390
 - Considerably smaller channel width & watershed area than spawning rivers in native range
 - May confirm observations by Deter et al. (2012) even though they suspected cross contamination in their samples (e.g., Lamine River (6,860 km²) and Bonne Femme Creek (464 km²) in the Missouri River basin)
 - > Smaller rivers may be susceptible to invasion/establishment than originally thought

Conclusions/Implications

- Biology/ecology of bigheaded carps in native ranges do not accurately reflect the adaptability/plasticity of these species in novel systems
- The plasticity of bigheaded carps makes them moving targets for management (plastic OR microevolution?)
- Efforts to predict invasion/establishment of these species can likely benefit from information based on existing North American populations
- Adaptive modeling & management will likely be key for achieving goals & objectives

Other AC Work in Goforth Lab

- Movements of AC in Wabash River, IN
 - Tag 300 AC using Vemco V16-4L acoustic tags
 - Monitor movements over ≈350 river miles
 - Evaluate where spawning taking place in Wabash

 Collaboration w/Dr. Andrea Liceaga (Dept. of Food Science, Purdue)

FORESTRY & NATURAL RESOURCES

Control of Early Life History

- Voltage gradients ≥16 V/cm necessary to significantly impact mortality of all three model species
 - Stages during epiboly particularly sensitive
- Multiple exposures had no effect on survival of zebrafish embryos
 - Survival related to voltage gradient alone

Acknowledgements

PURDUE

Goforth Lab:

Beth Bailey, Lab Coordinator

Conor Keitzer

Alison Coulter

Jay Beugly

Sam Nutile

Caleb Rennaker

Allison Lenaerts

Colleen Rennaker

Kristen Ruhl

Preston Sipe

Tess Thoren

Megan Gunn

Kevin Leet

THANKS AGAIN!!!

Questions?

Reuben R. Goforth

Department of Forestry and Natural Resources
Purdue University
West Lafayette, Indiana 49707 USA
269-967-7620 rgoforth@purdue.edu

FORESTRY & NATURAL RESOURCES